Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Psychiatry ; 14(1): 161, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531865

RESUMO

Mood disorders (MDs) are among the leading causes of disease burden worldwide. Limited specialized care availability remains a major bottleneck thus hindering pre-emptive interventions. MDs manifest with changes in mood, sleep, and motor activity, observable in ecological physiological recordings thanks to recent advances in wearable technology. Therefore, near-continuous and passive collection of physiological data from wearables in daily life, analyzable with machine learning (ML), could mitigate this problem, bringing MDs monitoring outside the clinician's office. Previous works predict a single label, either the disease state or a psychometric scale total score. However, clinical practice suggests that the same label may underlie different symptom profiles, requiring specific treatments. Here we bridge this gap by proposing a new task: inferring all items in HDRS and YMRS, the two most widely used standardized scales for assessing MDs symptoms, using physiological data from wearables. To that end, we develop a deep learning pipeline to score the symptoms of a large cohort of MD patients and show that agreement between predictions and assessments by an expert clinician is clinically significant (quadratic Cohen's κ and macro-average F1 score both of 0.609). While doing so, we investigate several solutions to the ML challenges associated with this task, including multi-task learning, class imbalance, ordinal target variables, and subject-invariant representations. Lastly, we illustrate the importance of testing on out-of-distribution samples.


Assuntos
Afeto , Transtornos do Humor , Humanos , Transtornos do Humor/diagnóstico , Aprendizado de Máquina , Sono
2.
JMIR Mhealth Uhealth ; 11: e45405, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-36939345

RESUMO

BACKGROUND: Depressive and manic episodes within bipolar disorder (BD) and major depressive disorder (MDD) involve altered mood, sleep, and activity, alongside physiological alterations wearables can capture. OBJECTIVE: Firstly, we explored whether physiological wearable data could predict (aim 1) the severity of an acute affective episode at the intra-individual level and (aim 2) the polarity of an acute affective episode and euthymia among different individuals. Secondarily, we explored which physiological data were related to prior predictions, generalization across patients, and associations between affective symptoms and physiological data. METHODS: We conducted a prospective exploratory observational study including patients with BD and MDD on acute affective episodes (manic, depressed, and mixed) whose physiological data were recorded using a research-grade wearable (Empatica E4) across 3 consecutive time points (acute, response, and remission of episode). Euthymic patients and healthy controls were recorded during a single session (approximately 48 h). Manic and depressive symptoms were assessed using standardized psychometric scales. Physiological wearable data included the following channels: acceleration (ACC), skin temperature, blood volume pulse, heart rate (HR), and electrodermal activity (EDA). Invalid physiological data were removed using a rule-based filter, and channels were time aligned at 1-second time units and segmented at window lengths of 32 seconds, as best-performing parameters. We developed deep learning predictive models, assessed the channels' individual contribution using permutation feature importance analysis, and computed physiological data to psychometric scales' items normalized mutual information (NMI). We present a novel, fully automated method for the preprocessing and analysis of physiological data from a research-grade wearable device, including a viable supervised learning pipeline for time-series analyses. RESULTS: Overall, 35 sessions (1512 hours) from 12 patients (manic, depressed, mixed, and euthymic) and 7 healthy controls (mean age 39.7, SD 12.6 years; 6/19, 32% female) were analyzed. The severity of mood episodes was predicted with moderate (62%-85%) accuracies (aim 1), and their polarity with moderate (70%) accuracy (aim 2). The most relevant features for the former tasks were ACC, EDA, and HR. There was a fair agreement in feature importance across classification tasks (Kendall W=0.383). Generalization of the former models on unseen patients was of overall low accuracy, except for the intra-individual models. ACC was associated with "increased motor activity" (NMI>0.55), "insomnia" (NMI=0.6), and "motor inhibition" (NMI=0.75). EDA was associated with "aggressive behavior" (NMI=1.0) and "psychic anxiety" (NMI=0.52). CONCLUSIONS: Physiological data from wearables show potential to identify mood episodes and specific symptoms of mania and depression quantitatively, both in BD and MDD. Motor activity and stress-related physiological data (EDA and HR) stand out as potential digital biomarkers for predicting mania and depression, respectively. These findings represent a promising pathway toward personalized psychiatry, in which physiological wearable data could allow the early identification and intervention of mood episodes.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Humanos , Feminino , Adulto , Masculino , Transtorno Depressivo Maior/diagnóstico , Transtorno Depressivo Maior/complicações , Transtorno Depressivo Maior/psicologia , Estudos Prospectivos , Mania/complicações , Transtorno Bipolar/diagnóstico , Biomarcadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...